Joseph Sorg
  • Professor & Associate Head of Faculty Affairs
Research Areas
  • Cell, Molecular & Developmental
  • Mechanisms of Biological Resilience
  • Microbiology
  • Physiology & Systems Biology

Biography

Joined the Department in 2010

Research Interests

Research Description

My lab is focused on the mechanisms of spore germination and bile acid resistance in Clostridium difficile.  C. difficile is a Gram-positive, spore forming, anaerobe that causes infections in people who have undergone antibiotic regimens.  Previously, we had shown that certain bile acids promote C. difficile spore germination while others inhibit germination.  Bile acids are small molecules made by the liver that help the absorption of fat and cholesterol in the GI tract while also serving as a protective barrier against invading pathogens.  Because C. difficile spores use the ratios of bile acids as cues for germination, the actively growing bacteria must have adapted means to avoid their toxic properties.  We are currently focused on identifying these factors and the mechanisms by which C. difficile spores germinate.

Laboratory Details

Laboratory Address:
Biological Sciences Building East
Room 316
979-845-6233

Educational Background

  • B.S., 2001, Purdue University, Biochemistry.
  • Ph.D., 2006, The University of Chicago, Microbiology.
  • Postdoctoral research: Tufts University School of Medicine.

Selected Publications

    1. Nerber, HN, Baloh, M, Sorg, JA. The small acid-soluble proteins of Clostridioides difficile regulate sporulation in a SpoIVB2-dependent manner. bioRxiv. 2023; :. doi: 10.1101/2023.05.17.541253. PubMed PMID:37292792 PubMed Central PMC10245694.
    2. Aguirre, AM, Adegbite, AO, Sorg, JA. Clostridioides difficile bile salt hydrolase activity has substrate specificity and affects biofilm formation. NPJ Biofilms Microbiomes. 2022;8 (1):94. doi: 10.1038/s41522-022-00358-0. PubMed PMID:36450806 PubMed Central PMC9712596.
    3. Brehm, JN, Sorg, JA. Plasmid Sequence and Availability for an Improved Clostridioides difficile CRISPR-Cas9 Mutagenesis System. Microbiol Resour Announc. 2022;11 (12):e0083322. doi: 10.1128/mra.00833-22. PubMed PMID:36342279 PubMed Central PMC9753633.
    4. Aguirre, AM, Sorg, JA. Gut associated metabolites and their roles in Clostridioides difficile pathogenesis. Gut Microbes. 2022;14 (1):2094672. doi: 10.1080/19490976.2022.2094672. PubMed PMID:35793402 PubMed Central PMC9450991.
    5. Baloh, M, Nerber, HN, Sorg, JA. Imaging Clostridioides difficile Spore Germination and Germination Proteins. J Bacteriol. 2022;204 (7):e0021022. doi: 10.1128/jb.00210-22. PubMed PMID:35762766 PubMed Central PMC9295549.
    6. Chandra, H, Sorg, JA, Hassett, DJ, Sun, X. Regulatory transcription factors of Clostridioides difficile pathogenesis with a focus on toxin regulation. Crit Rev Microbiol. 2023;49 (3):334-349. doi: 10.1080/1040841X.2022.2054307. PubMed PMID:35389761 .
    7. Simeon, RA, Zeng, Y, Chonira, V, Aguirre, AM, Lasagna, M, Baloh, M et al.. Correction to: Protease-stable DARPins as promising oral therapeutics. Protein Eng Des Sel. 2022;35 :. doi: 10.1093/protein/gzac003. PubMed PMID:35368085 PubMed Central PMC9081868.
    8. Simeon, RA, Zeng, Y, Chonira, V, Aguirre, AM, Lasagna, M, Baloh, M et al.. Protease-stable DARPins as promising oral therapeutics. Protein Eng Des Sel. 2021;34 :. doi: 10.1093/protein/gzab028. PubMed PMID:34882774 PubMed Central PMC8861517.
    9. Baloh, M, Sorg, JA. Clostridioides difficile spore germination: initiation to DPA release. Curr Opin Microbiol. 2022;65 :101-107. doi: 10.1016/j.mib.2021.11.001. PubMed PMID:34808546 PubMed Central PMC8792321.
    10. Aguirre, AM, Yalcinkaya, N, Wu, Q, Swennes, A, Tessier, ME, Roberts, P et al.. Bile acid-independent protection against Clostridioides difficile infection. PLoS Pathog. 2021;17 (10):e1010015. doi: 10.1371/journal.ppat.1010015. PubMed PMID:34665847 PubMed Central PMC8555850.
    Search PubMed